IL DOPPIO GATTO DI SCHRÖDINGER
I fisici di Yale hanno dato al famoso gatto di Schrödinger una seconda scatola e il risultato può aiutare ulteriormente una ricerca affidabile sulla computazione quantistica.
Il gatto di Schrödinger è un paradosso ben noto che applica il concetto di sovrapposizione nella fisica quantistica di oggetti che si incontrano nella vita di tutti i giorni. L'idea è che un gatto è posto in una scatola sigillata con una sorgente radioattiva e un veleno che verrà attivato se un atomo della sostanza radioattiva decade. La fisica quantistica suggerisce che il gatto sia vivo e al contempo morto (una sovrapposizione di stati), fino a quando qualcuno apre la scatola e, così facendo, cambia lo stato quantico.
Questo ipotetico esperimento, previsto da uno dei padri fondatori della meccanica quantistica nel 1935, ha trovato, negli ultimi anni, analogie vivaci nei laboratori. Gli scienziati possono ora disporre di un pacchetto d'onda di luce composta da centinaia di particelle, contemporaneamente in due stati nettamente diversi. Ogni stato corrisponde a una forma ordinaria (classica) di luce abbondante in natura.
Un team di scienziati di Yale ha creato un tipo più esotico di stato come gatto di Schrödinger che è stato proposto per gli esperimenti per più di 20 anni. Questo gatto vive o muore in due scatole in una sola volta: è un matrimonio dell'idea di gatto di Schrödinger e un altro concetto centrale della fisica quantistica: il cosiddetto entanglement. Entanglement permette un'osservazione locale per cambiare lo stato di un oggetto distante istantaneamente. Einstein una volta ha definito "azione spettrale a distanza", e in questo caso si permette uno stato al gatto da distribuire in diverse modalità spaziali.
La squadra Yale ha costruito un dispositivo costituito da due cavità, 3D microonde e una porta di monitoraggio aggiuntiva - tutti collegati da un superconduttore, che è un atomo artificiale. Il "cat" è fatto di luce a microonde confinato in entrambe le cavità.
"Questo gatto è grande e intelligente. Non rimane in una scatola, -ha detto Chen Wang, post-dottorato a Yale e primo autore di uno studio che descrive la ricerca- perché lo stato quantistico è condiviso tra le due cavità e non può essere descritto separatamente . Si può anche prendere una visione alternativa, dove abbiamo due piccoli e semplici gatti di Schrodinger, uno in ogni scatola, che sono impigliati."
La ricerca ha anche potenziali applicazioni nella computazione quantistica.Un computer quantistico sarebbe in grado di risolvere alcuni problemi molto più velocemente rispetto ai computer classici sfruttando sovrapposizione e entanglement. Ma uno dei problemi principali nello sviluppo di un computer quantistico affidabile è come correggere gli errori, senza disturbare le informazioni.
"Si scopre che gli stati 'gatto' sono un approccio molto efficace per la memorizzazione delle informazioni quantistiche ridondanti e, per l'attuazione della correzione degli errori quantistici. La generazione di un gatto in due scatole-ha detto il co-autore Robert Schoelkopf, Sterling professore di Fisica applicata e Fisica,direttore del Yale Quantum Institute- è il primo passo verso il funzionamento logico tra due bit quantistici in modo che l'errore sia correggibile .
Schoelkopf e i suoi collaboratori , Michel Devoret e Steve Girvin, hanno aperto la strada al campo dell'elettrodinamica quantistica su circuito (cQED), che fornisce uno dei quadri più utilizzati per la ricerca sulla computazione quantistica. Devoret, Beinecke professore di fisica di Yale, e Girvin, Eugene Higgins professore di Fisica di Yale e Fisica Applicata, sono co-autori della carta.La ricerca si basa su più di un decennio di sviluppo in architettura cQED. La squadra Yale ha progettato una serie di nuove funzioni, tra cui cavità 3D cilindriche con tempo di registrazione dell'informazione quantistica, con un record di più di 1 millisecondo nei circuiti superconduttori, e un sistema di misura che controlla alcuni aspetti di uno stato quantistico in modo preciso, non distruttivo. "Abbiamo combinato , qui -ha detto Wang- un bel po 'di recenti tecnologie ".
Il gatto di Schrödinger è un paradosso ben noto che applica il concetto di sovrapposizione nella fisica quantistica di oggetti che si incontrano nella vita di tutti i giorni. L'idea è che un gatto è posto in una scatola sigillata con una sorgente radioattiva e un veleno che verrà attivato se un atomo della sostanza radioattiva decade. La fisica quantistica suggerisce che il gatto sia vivo e al contempo morto (una sovrapposizione di stati), fino a quando qualcuno apre la scatola e, così facendo, cambia lo stato quantico.
Questo ipotetico esperimento, previsto da uno dei padri fondatori della meccanica quantistica nel 1935, ha trovato, negli ultimi anni, analogie vivaci nei laboratori. Gli scienziati possono ora disporre di un pacchetto d'onda di luce composta da centinaia di particelle, contemporaneamente in due stati nettamente diversi. Ogni stato corrisponde a una forma ordinaria (classica) di luce abbondante in natura.
Un team di scienziati di Yale ha creato un tipo più esotico di stato come gatto di Schrödinger che è stato proposto per gli esperimenti per più di 20 anni. Questo gatto vive o muore in due scatole in una sola volta: è un matrimonio dell'idea di gatto di Schrödinger e un altro concetto centrale della fisica quantistica: il cosiddetto entanglement. Entanglement permette un'osservazione locale per cambiare lo stato di un oggetto distante istantaneamente. Einstein una volta ha definito "azione spettrale a distanza", e in questo caso si permette uno stato al gatto da distribuire in diverse modalità spaziali.
La squadra Yale ha costruito un dispositivo costituito da due cavità, 3D microonde e una porta di monitoraggio aggiuntiva - tutti collegati da un superconduttore, che è un atomo artificiale. Il "cat" è fatto di luce a microonde confinato in entrambe le cavità.
"Questo gatto è grande e intelligente. Non rimane in una scatola, -ha detto Chen Wang, post-dottorato a Yale e primo autore di uno studio che descrive la ricerca- perché lo stato quantistico è condiviso tra le due cavità e non può essere descritto separatamente . Si può anche prendere una visione alternativa, dove abbiamo due piccoli e semplici gatti di Schrodinger, uno in ogni scatola, che sono impigliati."
La ricerca ha anche potenziali applicazioni nella computazione quantistica.Un computer quantistico sarebbe in grado di risolvere alcuni problemi molto più velocemente rispetto ai computer classici sfruttando sovrapposizione e entanglement. Ma uno dei problemi principali nello sviluppo di un computer quantistico affidabile è come correggere gli errori, senza disturbare le informazioni.
"Si scopre che gli stati 'gatto' sono un approccio molto efficace per la memorizzazione delle informazioni quantistiche ridondanti e, per l'attuazione della correzione degli errori quantistici. La generazione di un gatto in due scatole-ha detto il co-autore Robert Schoelkopf, Sterling professore di Fisica applicata e Fisica,direttore del Yale Quantum Institute- è il primo passo verso il funzionamento logico tra due bit quantistici in modo che l'errore sia correggibile .
Schoelkopf e i suoi collaboratori , Michel Devoret e Steve Girvin, hanno aperto la strada al campo dell'elettrodinamica quantistica su circuito (cQED), che fornisce uno dei quadri più utilizzati per la ricerca sulla computazione quantistica. Devoret, Beinecke professore di fisica di Yale, e Girvin, Eugene Higgins professore di Fisica di Yale e Fisica Applicata, sono co-autori della carta.La ricerca si basa su più di un decennio di sviluppo in architettura cQED. La squadra Yale ha progettato una serie di nuove funzioni, tra cui cavità 3D cilindriche con tempo di registrazione dell'informazione quantistica, con un record di più di 1 millisecondo nei circuiti superconduttori, e un sistema di misura che controlla alcuni aspetti di uno stato quantistico in modo preciso, non distruttivo. "Abbiamo combinato , qui -ha detto Wang- un bel po 'di recenti tecnologie ".
Commenti
Posta un commento